Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 106,836,925

 Experimental study into the behaviour of profiled composite walls under combined axial and thermal loadings
Tác giả hoặc Nhóm tác giả: Quang X. LeVinh T.N. DaoJose L. ToreroTuan D. Ngo
Nơi đăng: Engineering Structures Journal; Số: 210;Từ->đến trang: 1-15;Năm: 2020
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Profiled composite walls (PCWs) are regularly used in construction because they provide enhanced ductility, shear resistance and damage tolerance when compared to traditional reinforced concrete walls. Although much research has been conducted to understand the structural performance of PCWs at ambient temperature, studies into their performance at high temperatures remain limited. In this work, a comprehensive set of experiments has been conducted to investigate the performance of PCWs at both ambient and elevated temperatures. A heat source comprising of radiant burners and 1MN MTS machine were employed to deliver known and actively controlled thermal and structural boundary conditions on the PCW samples. The experiments were conducted to understand the effects of an incident heat flux when combined with loads. The results from this study have shown that (i) the axial load capacity of PCWs decreases as the temperature increases; (ii) the PCWs tends to exhibit ductile failure modes when cold but brittle failure at high temperature; (iii) due to thermal bowing, the failure plane of the PCWs subjected to one-side heating shifts closer to the heating source; and (iv) applying a load in an eccentric manner can compensate for the effect of temperature gradient.
ABSTRACT
Profiled composite walls (PCWs) are regularly used in construction because they provide enhanced ductility, shear resistance and damage tolerance when compared to traditional reinforced concrete walls. Although much research has been conducted to understand the structural performance of PCWs at ambient temperature, studies into their performance at high temperatures remain limited. In this work, a comprehensive set of experiments has been conducted to investigate the performance of PCWs at both ambient and elevated temperatures. A heat source comprising of radiant burners and 1MN MTS machine were employed to deliver known and actively controlled thermal and structural boundary conditions on the PCW samples. The experiments were conducted to understand the effects of an incident heat flux when combined with loads. The results from this study have shown that (i) the axial load capacity of PCWs decreases as the temperature increases; (ii) the PCWs tends to exhibit ductile failure modes when cold but brittle failure at high temperature; (iii) due to thermal bowing, the failure plane of the PCWs subjected to one-side heating shifts closer to the heating source; and (iv) applying a load in an eccentric manner can compensate for the effect of temperature gradient.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn