Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 60,077,795

 Online Learning-based Clustering Approach for News Recommendation Systems
Tác giả hoặc Nhóm tác giả: Minh N. H. Nguyen, Chuan Pham, Jaehyeok Son, and Choong Seon Hong
Nơi đăng: Asia-Pacific Network Operations and Management Symposium 2016 (APNOMS); Số: Oct - 2016;Từ->đến trang: 1 ~ 4;Năm: 2016
Lĩnh vực: Công nghệ thông tin; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Recommender agents are widely used in online markets, social networks and search engines. The recent online news recommendation systems such as Google News and Yahoo! News produce real-time decisions for ranking and displaying highlighted stories from massive news and users access per day. The more relevant highlighted items are suggested to users, the more interesting and better feedback from users achieve. Therefore, the distributed online learning can be a promising approach that provides learning ability for recommender agents based on side information under dynamic environment in large scale scenarios. In this work, we propose a distributed algorithm that is integrated online K-Means user contexts clustering with online learning mechanisms for selecting a highlighted news. Our proposed algorithm for online clustering with lower bound confident clustering approximates closer to offline K-Means clusters than greedy clustering and gives better performance in learning process. The algorithm provides a scalability, cheap storage and computation cost approach for large scale news recommendation systems.
ABSTRACT
Recommender agents are widely used in online markets, social networks and search engines. The recent online news recommendation systems such as Google News and Yahoo! News produce real-time decisions for ranking and displaying highlighted stories from massive news and users access per day. The more relevant highlighted items are suggested to users, the more interesting and better feedback from users achieve. Therefore, the distributed online learning can be a promising approach that provides learning ability for recommender agents based on side information under dynamic environment in large scale scenarios. In this work, we propose a distributed algorithm that is integrated online K-Means user contexts clustering with online learning mechanisms for selecting a highlighted news. Our proposed algorithm for online clustering with lower bound confident clustering approximates closer to offline K-Means clusters than greedy clustering and gives better performance in learning process. The algorithm provides a scalability, cheap storage and computation cost approach for large scale news recommendation systems.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn