Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 60,081,025

 Outliers Detection and Correction for Cooperative Distributed Online Learning in Wireless Sensor Network
Tác giả hoặc Nhóm tác giả: Minh N. H. Nguyen, Chuan Pham, Nguyen H. Tran, and Choong Seon Hong.
Nơi đăng: The 31st International Conference on Information Networking (ICOIN 2017); Số: 2017;Từ->đến trang: 349-353;Năm: 2017
Lĩnh vực: Công nghệ thông tin; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
The recent distributed online convex optimization framework has developed in Wireless sensor networks (WSN) provide the promising approach for solving approximately stochastic optimization problem over network of sensors follows distributed manner. In practice, most of real environmental sensing activities are highly dynamic where noisy sensory information often appears and affects to the learning performance. However, the original distributed saddle point (DSPA) algorithm is lack of considering about the consequence of falsification in online learning. Based on the simulation observations conducted in this paper, we figure out the fluctuation and the slow convergence rate leads to overall prediction performance reduction of distributed online least square problem. Therefore, we propose an integrated outliers detection, correction mechanism in order to stabilize prediction and improve convergence rate.
ABSTRACT
The recent distributed online convex optimization framework has developed in Wireless sensor networks (WSN) provide the promising approach for solving approximately stochastic optimization problem over network of sensors follows distributed manner. In practice, most of real environmental sensing activities are highly dynamic where noisy sensory information often appears and affects to the learning performance. However, the original distributed saddle point (DSPA) algorithm is lack of considering about the consequence of falsification in online learning. Based on the simulation observations conducted in this paper, we figure out the fluctuation and the slow convergence rate leads to overall prediction performance reduction of distributed online least square problem. Therefore, we propose an integrated outliers detection, correction mechanism in order to stabilize prediction and improve convergence rate.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn