Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 106,970,957

 A Kriging-Based Surrogate Model for Seismic Fragility Analysis of Unanchored Storage Tanks
Tác giả hoặc Nhóm tác giả: Hoang Nam Phan , Fabrizio Paolacci , Daniele Corritore , Nicola Tondini , Oreste S. Bursi
Nơi đăng: ASME 2019 Pressure Vessels & Piping Conference; Số: PVP2019-93259;Từ->đến trang: V008T08A024;Năm: 2019
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
The seismic vulnerability of aboveground steel storage tanks has been dramatically proved during the latest seismic events, which demonstrates the need for reliable numerical models for vulnerability and risk assessments of storage facilities. While for anchored aboveground tanks, simplified models are nowadays available and mostly used for the seismic vulnerability assessment, in the case of unanchored tanks, the scientific community is still working on numerical models capable of reliably predicting the nonlinearity due to uplift and sliding mechanisms. In this paper, a surrogate model based on a Kriging approach is proposed for a case study of an unanchored tank, whose calibration is performed on a three-dimensional finite element (3D FE) model using a reliable design of experiments (DOE) method. The verification of the 3D FE model is also done through a shaking table campaign. The outcomes show the effectiveness of the proposed model to build fragility curves at a low computational cost of the critical damage state of the tank, i.e., the plastic rotation of the shell-to-bottom joint.
ABSTRACT
The seismic vulnerability of aboveground steel storage tanks has been dramatically proved during the latest seismic events, which demonstrates the need for reliable numerical models for vulnerability and risk assessments of storage facilities. While for anchored aboveground tanks, simplified models are nowadays available and mostly used for the seismic vulnerability assessment, in the case of unanchored tanks, the scientific community is still working on numerical models capable of reliably predicting the nonlinearity due to uplift and sliding mechanisms. In this paper, a surrogate model based on a Kriging approach is proposed for a case study of an unanchored tank, whose calibration is performed on a three-dimensional finite element (3D FE) model using a reliable design of experiments (DOE) method. The verification of the 3D FE model is also done through a shaking table campaign. The outcomes show the effectiveness of the proposed model to build fragility curves at a low computational cost of the critical damage state of the tank, i.e., the plastic rotation of the shell-to-bottom joint.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn