Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 107,038,446

 Effect of an enhanced rubber-cement matrix interface on freeze-thaw resistance of the cement-based composite
Tác giả hoặc Nhóm tác giả: Phuong Pham, Ahmed Toumi, Anaclet Turatsinze
Nơi đăng: Construction and Building Materials; Số: 207;Từ->đến trang: 528-534;Năm: 2019
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Bond defects at rubber-cement matrix interface are detrimental to durability of the cement composite. Therefore, coating rubber aggregates with copolymer has been suggested to overcome this defect. This paper aims to investigate the effect of an improved rubber-cement matrix bond on frost resistance. Freeze-thaw temperature cycles were controlled by a thermal sensor embedded inside the core of a mortar specimen. Measurements of relevant quantities, such as mass loss, length change, mechanical properties (relative dynamic modulus of elasticity, compressive and flexural strengths), and durability factor, demonstrated that rubberized cement-based materials were more resistant under freeze-thaw environments than the control one. Especially, regardless of slight length gain of mortar incorporating coated rubber aggregates, copolymer coating still made the composite durable in frost conditions owing to its improved strain capacity and higher residual post-peak tensile strength.
ABSTRACT
Bond defects at rubber-cement matrix interface are detrimental to durability of the cement composite. Therefore, coating rubber aggregates with copolymer has been suggested to overcome this defect. This paper aims to investigate the effect of an improved rubber-cement matrix bond on frost resistance. Freeze-thaw temperature cycles were controlled by a thermal sensor embedded inside the core of a mortar specimen. Measurements of relevant quantities, such as mass loss, length change, mechanical properties (relative dynamic modulus of elasticity, compressive and flexural strengths), and durability factor, demonstrated that rubberized cement-based materials were more resistant under freeze-thaw environments than the control one. Especially, regardless of slight length gain of mortar incorporating coated rubber aggregates, copolymer coating still made the composite durable in frost conditions owing to its improved strain capacity and higher residual post-peak tensile strength.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn