Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 36,932,894

 Modelling the carbonation of cement pastes under a CO2 pressure gradient considering both diffusive and convective transport
Tác giả hoặc Nhóm tác giả: Phung Quoc Tri; Maes Norbert; Jacques Diederik; De Schutter Geert; Ye Guang; Perko Janez
Nơi đăng: Construction and Building Materials; Số: 114;Từ->đến trang: 333-351;Năm: 2016
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Underground concrete structures in radioactive waste disposal have the potential to be subjected to a high hydrostatic pressure and the surrounding environment may contain a high dissolved CO2 concentration. Therefore, a combination of diffusion and advection should be taken into account when one considers the carbonation mechanism. This study aims at developing a model to predict the evolution of the microstructure and transport properties of hardened cement pastes due to carbonation under accelerated conditions in which a pressure gradient of pure CO2 is applied. The current model is improved from the preliminary model in terms of extension to limestone cement paste and accounting for the transport of moisture. The proposed model is based on a macroscopic mass balance for CO2 and moisture in both gaseous and aqueous phases. A simplified solid-liquid equilibrium curve is used to relate the Ca content in aqueous and solid phases. Besides the prediction of the changes in porosity, diffusivity, permeability, and saturation degree, the model also enables prediction of the carbonation degree, portlandite content, and CO2 uptake. Verification with experimental results from accelerated carbonation tests shows a good agreement.
ABSTRACT
Underground concrete structures in radioactive waste disposal have the potential to be subjected to a high hydrostatic pressure and the surrounding environment may contain a high dissolved CO2 concentration. Therefore, a combination of diffusion and advection should be taken into account when one considers the carbonation mechanism. This study aims at developing a model to predict the evolution of the microstructure and transport properties of hardened cement pastes due to carbonation under accelerated conditions in which a pressure gradient of pure CO2 is applied. The current model is improved from the preliminary model in terms of extension to limestone cement paste and accounting for the transport of moisture. The proposed model is based on a macroscopic mass balance for CO2 and moisture in both gaseous and aqueous phases. A simplified solid-liquid equilibrium curve is used to relate the Ca content in aqueous and solid phases. Besides the prediction of the changes in porosity, diffusivity, permeability, and saturation degree, the model also enables prediction of the carbonation degree, portlandite content, and CO2 uptake. Verification with experimental results from accelerated carbonation tests shows a good agreement.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0511 3822 041 ; Email: dhdn@ac.udn.vn