Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 106,839,637

 An Adaptive Neural Non-Singular Fast-Terminal Sliding-Mode Control for Industrial Robotic Manipulators
Tác giả hoặc Nhóm tác giả: Anh Tuan Vo, Hee-Jun Kang
Nơi đăng: Applied Sciences, MDPI; Số: 8(12);Từ->đến trang: 2562;Năm: 2018
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
In this study, a robust control strategy is suggested for industrial robotic manipulators. First,
to minimize the effects of disturbances and dynamic uncertainties, while achieving faster response
times and removing the singularity problem, a nonsingular fast terminal sliding function is proposed. Second, to achieve the proposed tracking trajectory and chattering phenomenon elimination, a robust control strategy is designed for the robotic manipulator based on the proposed sliding function and a continuous adaptive control law. Furthermore, the dynamical model of the robotic system is estimated by applying a radial basis function neural network. Thanks to those techniques, the proposed system can operate free of an exact robotic model. The suggested system provides high tracking accuracy, robustness, and fast response with minimal positional errors compared to other control strategies. Proof of the robustness and stability of the suggested system has been verified by the Lyapunov theory. In simulation analyses, the simulated results present the effectiveness of the suggested strategy for the joint position tracking control of a 3-degree of freedom (3-DOF) PUMA560 robot.
ABSTRACT
In this study, a robust control strategy is suggested for industrial robotic manipulators. First,
to minimize the effects of disturbances and dynamic uncertainties, while achieving faster response
times and removing the singularity problem, a nonsingular fast terminal sliding function is proposed. Second, to achieve the proposed tracking trajectory and chattering phenomenon elimination, a robust control strategy is designed for the robotic manipulator based on the proposed sliding function and a continuous adaptive control law. Furthermore, the dynamical model of the robotic system is estimated by applying a radial basis function neural network. Thanks to those techniques, the proposed system can operate free of an exact robotic model. The suggested system provides high tracking accuracy, robustness, and fast response with minimal positional errors compared to other control strategies. Proof of the robustness and stability of the suggested system has been verified by the Lyapunov theory. In simulation analyses, the simulated results present the effectiveness of the suggested strategy for the joint position tracking control of a 3-degree of freedom (3-DOF) PUMA560 robot.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn