Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 112,298,152

 Data-Driven Design of High-Curie Temperature Full-Heusler Alloys for Spintronic Applications
Tác giả hoặc Nhóm tác giả: QAT Nguyen, TH Ho, Tran Bao Tien, Yoshiyuki Kawazoe, VQ Bui*
Nơi đăng: Materials Today Physics; Số: 47;Từ->đến trang: 101541;Năm: 2024
Lĩnh vực: Khoa học; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
In this study, we employ density functional theory (DFT) and subgroup discovery (SGD) to explore the structural and magnetic properties of full cubic Heusler compounds, with a particular emphasis on their Curie temperatures (Tc) and magnetic stability. Our comprehensive examination of 2903 structures across both L21 and Xa phases identifies configurations that exhibit both structural stability and superior magnetic properties. Notable among these, compounds such as Co2MnSi, Co2CrGe, and Cr2VGe exhibit remarkable magnetic stability, maintaining their ferromagnetic properties well above room temperature. Co2MnSi displays a substantial magnetic moment of 5.00 μB and maintains its ferromagnetic properties up to a Curie temperature of 937 K, underscoring its suitability for high-temperature applications. Similarly, Co2CrGe, with a magnetic moment of 4.00 μB, transitions to a paramagnetic state at a higher temperature of 952 K, demonstrating enhanced thermal durability. Moreover, Cr2VGe, notable for its robust magnetic moment of 2.81 μB, retains its ferromagnetic characteristics until an exceptional 2412 K, making it extremely valuable for thermally intensive environments. These findings underscore the potential of these materials in developing durable and efficient spintronic devices that operate under extreme thermal conditions. By mapping the interplay between electronic structure and magnetic properties, our study provides a predictive framework for optimizing the performance of spintronic materials.
ABSTRACT
In this study, we employ density functional theory (DFT) and subgroup discovery (SGD) to explore the structural and magnetic properties of full cubic Heusler compounds, with a particular emphasis on their Curie temperatures (Tc) and magnetic stability. Our comprehensive examination of 2903 structures across both L21 and Xa phases identifies configurations that exhibit both structural stability and superior magnetic properties. Notable among these, compounds such as Co2MnSi, Co2CrGe, and Cr2VGe exhibit remarkable magnetic stability, maintaining their ferromagnetic properties well above room temperature. Co2MnSi displays a substantial magnetic moment of 5.00 μB and maintains its ferromagnetic properties up to a Curie temperature of 937 K, underscoring its suitability for high-temperature applications. Similarly, Co2CrGe, with a magnetic moment of 4.00 μB, transitions to a paramagnetic state at a higher temperature of 952 K, demonstrating enhanced thermal durability. Moreover, Cr2VGe, notable for its robust magnetic moment of 2.81 μB, retains its ferromagnetic characteristics until an exceptional 2412 K, making it extremely valuable for thermally intensive environments. These findings underscore the potential of these materials in developing durable and efficient spintronic devices that operate under extreme thermal conditions. By mapping the interplay between electronic structure and magnetic properties, our study provides a predictive framework for optimizing the performance of spintronic materials.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn