Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 112,298,152

 A genetic algorithm with multi-parent crossover using quaternion representation for numerical function optimization
Tác giả hoặc Nhóm tác giả: Thanh Tung Khuat, My Hanh Le
Nơi đăng: Applied Intelligence (SCI); Số: Volume 46, Issue 4;Từ->đến trang: 810–826;Năm: 2017
Lĩnh vực: Công nghệ thông tin; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Finding optimal solutions of a numerical function of more than one independent variable is an important problem with many practical applications including process control systems, data fitting, and engineering designs. Over the last few decades, techniques for solving unconstrained optimization problems have been proposed. Evolutionary Algorithms have emerged as one of the most popular selections for tackling these problems, among which Genetic Algorithms (GAs) are widely used in practice. In recent literature on GAs, a Genetic Algorithm with multi-parent crossover (GA-MPC) was found to be superior over other algorithms. Nevertheless, the GA-MPC still has some difficulties when dealing with separable test issues and convergence to global optima in the high-dimensional search space. Meanwhile, quaternions, which are an extension of complex numbers, can allow algorithms to expand the search space to avoid getting stuck in the local optima. Therefore, this study aims to employ quaternions for representing individuals in the GA-MPC to enhance the effectiveness of the GA-MPC. Experimental results for ten benchmark functions indicated that the GA-MPC using the quaternion representation of individuals improved the quality of solutions compared with the original GA-MPC.
ABSTRACT
Finding optimal solutions of a numerical function of more than one independent variable is an important problem with many practical applications including process control systems, data fitting, and engineering designs. Over the last few decades, techniques for solving unconstrained optimization problems have been proposed. Evolutionary Algorithms have emerged as one of the most popular selections for tackling these problems, among which Genetic Algorithms (GAs) are widely used in practice. In recent literature on GAs, a Genetic Algorithm with multi-parent crossover (GA-MPC) was found to be superior over other algorithms. Nevertheless, the GA-MPC still has some difficulties when dealing with separable test issues and convergence to global optima in the high-dimensional search space. Meanwhile, quaternions, which are an extension of complex numbers, can allow algorithms to expand the search space to avoid getting stuck in the local optima. Therefore, this study aims to employ quaternions for representing individuals in the GA-MPC to enhance the effectiveness of the GA-MPC. Experimental results for ten benchmark functions indicated that the GA-MPC using the quaternion representation of individuals improved the quality of solutions compared with the original GA-MPC.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn