Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 112,298,152

 AN IMPROVED GENETIC ALGORITHM FOR TEST DATA GENERATION FOR SIMULINK MODEL
Tác giả hoặc Nhóm tác giả: LE THI MY HANH, NGUYEN THANH BINH, KHUAT THANH TUNG
Nơi đăng: Journal of Computer Science and Cybernetics; Số: V.33, N.1 (2017);Từ->đến trang: 50-69;Năm: 2017
Lĩnh vực: Công nghệ thông tin; Loại: Bài báo khoa học; Thể loại: Trong nước
TÓM TẮT
Mutation testing is a powerful and effective software testing technique to assess the quality of test suites. Although many research works have been done in the field of search-based testing, automatic test data generation based on the mutation analysis method is not straightforward. In this paper, an Improved Genetic Algorithm (IGA) is proposed to increase the quality of test data based on mutation coverage criterion. This algorithm involves some modifications of genetic operators and the employment of memory mechanism to enhance its effectiveness. The proposed approach is implemented to generate test data for Simulink models. The obtained results indicated that IGA outperformed the conventional genetic algorithm in terms of the quality of test sets, and the execution time.
ABSTRACT
Mutation testing is a powerful and effective software testing technique to assess the quality of test suites. Although many research works have been done in the field of search-based testing, automatic test data generation based on the mutation analysis method is not straightforward. In this paper, an Improved Genetic Algorithm (IGA) is proposed to increase the quality of test data based on mutation coverage criterion. This algorithm involves some modifications of genetic operators and the employment of memory mechanism to enhance its effectiveness. The proposed approach is implemented to generate test data for Simulink models. The obtained results indicated that IGA outperformed the conventional genetic algorithm in terms of the quality of test sets, and the execution time.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn