Home
Giới thiệu
Tài khoản
Đăng nhập
Quên mật khẩu
Đổi mật khẩu
Đăng ký tạo tài khoản
Liệt kê
Công trình khoa học
Bài báo trong nước
Bài báo quốc tế
Sách và giáo trình
Thống kê
Công trình khoa học
Bài báo khoa học
Sách và giáo trình
Giáo sư
Phó giáo sư
Tiến sĩ
Thạc sĩ
Lĩnh vực nghiên cứu
Tìm kiếm
Cá nhân
Nội dung
Góp ý
Hiệu chỉnh lý lịch
Thông tin chung
English
Đề tài NC khoa học
Bài báo, báo cáo khoa học
Hướng dẫn Sau đại học
Sách và giáo trình
Các học phần và môn giảng dạy
Giải thưởng khoa học, Phát minh, sáng chế
Khen thưởng
Thông tin khác
Tài liệu tham khảo
Hiệu chỉnh
Số người truy cập: 112,298,152
AN IMPROVED GENETIC ALGORITHM FOR TEST DATA GENERATION FOR SIMULINK MODEL
Tác giả hoặc Nhóm tác giả:
LE THI MY HANH, NGUYEN THANH BINH, KHUAT THANH TUNG
Nơi đăng:
Journal of Computer Science and Cybernetics;
S
ố:
V.33, N.1 (2017);
Từ->đến trang
: 50-69;
Năm:
2017
Lĩnh vực:
Công nghệ thông tin;
Loại:
Bài báo khoa học;
Thể loại:
Trong nước
TÓM TẮT
Mutation testing is a powerful and effective software testing technique to assess the quality of test suites. Although many research works have been done in the field of search-based testing, automatic test data generation based on the mutation analysis method is not straightforward. In this paper, an Improved Genetic Algorithm (IGA) is proposed to increase the quality of test data based on mutation coverage criterion. This algorithm involves some modifications of genetic operators and the employment of memory mechanism to enhance its effectiveness. The proposed approach is implemented to generate test data for Simulink models. The obtained results indicated that IGA outperformed the conventional genetic algorithm in terms of the quality of test sets, and the execution time.
ABSTRACT
Mutation testing is a powerful and effective software testing technique to assess the quality of test suites. Although many research works have been done in the field of search-based testing, automatic test data generation based on the mutation analysis method is not straightforward. In this paper, an Improved Genetic Algorithm (IGA) is proposed to increase the quality of test data based on mutation coverage criterion. This algorithm involves some modifications of genetic operators and the employment of memory mechanism to enhance its effectiveness. The proposed approach is implemented to generate test data for Simulink models. The obtained results indicated that IGA outperformed the conventional genetic algorithm in terms of the quality of test sets, and the execution time.
© Đại học Đà Nẵng
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn