Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 112,298,152

 Ensemble learning for software fault prediction problem with imbalanced data
Tác giả hoặc Nhóm tác giả: Thanh Tung Khuat, My Hanh Le
Nơi đăng: International Journal of Electrical and Computer Engineering (IJECE); Số: 9(4);Từ->đến trang: 3241-3246;Năm: 2019
Lĩnh vực: Công nghệ thông tin; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Fault prediction problem has a crucial role in the software development process because it contributes to reducing defects and assisting the testing process towards fault-free software components. Therefore, there are a lot of efforts aiming to address this type of issues, in which static code characteristics are usually adopted to construct fault classification models. One of the challenging problems influencing the performance of predictive classifiers is the high imbalance among patterns belonging to different classes. This paper aims to integrate the sampling techniques and common classification techniques to form a useful ensemble model for the software defect prediction problem. The empirical results conducted on the benchmark datasets of software projects have shown the promising performance of our proposal in comparison with individual classifiers.
ABSTRACT
Fault prediction problem has a crucial role in the software development process because it contributes to reducing defects and assisting the testing process towards fault-free software components. Therefore, there are a lot of efforts aiming to address this type of issues, in which static code characteristics are usually adopted to construct fault classification models. One of the challenging problems influencing the performance of predictive classifiers is the high imbalance among patterns belonging to different classes. This paper aims to integrate the sampling techniques and common classification techniques to form a useful ensemble model for the software defect prediction problem. The empirical results conducted on the benchmark datasets of software projects have shown the promising performance of our proposal in comparison with individual classifiers.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn