Home
Giới thiệu
Tài khoản
Đăng nhập
Quên mật khẩu
Đổi mật khẩu
Đăng ký tạo tài khoản
Liệt kê
Công trình khoa học
Bài báo trong nước
Bài báo quốc tế
Sách và giáo trình
Thống kê
Công trình khoa học
Bài báo khoa học
Sách và giáo trình
Giáo sư
Phó giáo sư
Tiến sĩ
Thạc sĩ
Lĩnh vực nghiên cứu
Tìm kiếm
Cá nhân
Nội dung
Góp ý
Hiệu chỉnh lý lịch
Thông tin chung
English
Đề tài NC khoa học
Bài báo, báo cáo khoa học
Hướng dẫn Sau đại học
Sách và giáo trình
Các học phần và môn giảng dạy
Giải thưởng khoa học, Phát minh, sáng chế
Khen thưởng
Thông tin khác
Tài liệu tham khảo
Hiệu chỉnh
Số người truy cập: 112,298,152
Towards data variation trends recommendation
Tác giả hoặc Nhóm tác giả:
Tuan Thanh Nguyen, Phuc Quang Tran, Hoang Tan Nguyen, Toan Phung Huynh, Hanh My Thi Le, Hiep Xuan Huynh
Nơi đăng:
Proceedings of the 3rd International Conference on Machine Learning and Soft Computing;
S
ố:
3rd;
Từ->đến trang
: 117-122;
Năm:
2019
Lĩnh vực:
Công nghệ thông tin;
Loại:
Bài báo khoa học;
Thể loại:
Quốc tế
TÓM TẮT
Present study on recommender systems mainly focuses on the logical nature of the existence or non-existence of a priority relationship between the user and data item, regardless of the ratio or implicative relationship based on statistics between users and data items in a particular context. Therefore, this report proposes a new approach to recommender systems based on data variation trends; such method will help form a new approach to recommender systems on basis of knowledge available in the form of implicity by computation of partial derivatives for interestingness measurements. In addition, experiments aim at evaluating the effectiveness of the proposed model with traditional models based on using MSWeb dataset as empirical data, comparing and discussing the results obtained from the proposed model.
ABSTRACT
© Đại học Đà Nẵng
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn