Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 112,298,152

 Acoustic Scene Classification Using Deep Mixture of Pre-trained Convolutional Neural Networks
Tác giả hoặc Nhóm tác giả: Truc Nguyen, Alexander Fuchs, Franz Pernkopf
Nơi đăng: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA); Số: doi: 10.1109/ICMLA.2019.00151;Từ->đến trang: 871-875;Năm: 2019
Lĩnh vực: Chưa xác định; Loại: Báo cáo; Thể loại: Quốc tế
TÓM TẮT
ABSTRACT
We propose a heterogeneous system of Deep Mixture of Experts (DMoEs) models using different Convolutional Neural Networks (CNNs) for acoustic scene classification (ASC). Each DMoEs module is a mixture of different parallel CNN structures weighted by a gating network. All CNNs use the same input data. The CNN architectures play the role of experts extracting a variety of features. The experts are pre-trained, and kept fixed (frozen) for the DMoEs model. The DMoEs is post-trained by optimizing weights of the gating network, which estimates the contribution of the experts in the mixture. In order to enhance the performance, we use an ensemble of three DMoEs modules each with different pairs of inputs and individual CNN models. The input pairs are spectrogram combinations of binaural audio and mono audio as well as their pre-processed variations using harmonic-percussive source separation (HPSS) and nearest neighbor filters (NNFs). The classification result of the proposed system is 72.1% improving the baseline by around 12% (absolute) on the development data of DCASE 2018 challenge task 1A.
[ 2022\2022m09d05_9_22_33Acoustic_Scene_Classification_Using_Deep_Mixtures_of_Pre-trained_Convolutional_Neural_Networks.pdf ]
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn