Home
Giới thiệu
Tài khoản
Đăng nhập
Quên mật khẩu
Đổi mật khẩu
Đăng ký tạo tài khoản
Liệt kê
Công trình khoa học
Bài báo trong nước
Bài báo quốc tế
Sách và giáo trình
Thống kê
Công trình khoa học
Bài báo khoa học
Sách và giáo trình
Giáo sư
Phó giáo sư
Tiến sĩ
Thạc sĩ
Lĩnh vực nghiên cứu
Tìm kiếm
Cá nhân
Nội dung
Góp ý
Hiệu chỉnh lý lịch
Thông tin chung
English
Đề tài NC khoa học
Bài báo, báo cáo khoa học
Hướng dẫn Sau đại học
Sách và giáo trình
Các học phần và môn giảng dạy
Giải thưởng khoa học, Phát minh, sáng chế
Khen thưởng
Thông tin khác
Tài liệu tham khảo
Hiệu chỉnh
Số người truy cập: 112,298,152
Lung sound classification using snapshot ensemble of convolutional neural networks
Tác giả hoặc Nhóm tác giả:
Truc Nguyen, Franz Pernkopf
Nơi đăng:
2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);
S
ố:
doi: 10.1109/EMBC44109.2020.9176076;
Từ->đến trang
: 760-763;
Năm:
2020
Lĩnh vực:
Khoa học công nghệ;
Loại:
Báo cáo;
Thể loại:
Quốc tế
TÓM TẮT
ABSTRACT
We propose a robust and efficient lung sound classification system using a snapshot ensemble of convolutional neural networks (CNNs). A robust CNN architecture is used to extract high-level features from log mel spectrograms. The CNN architecture is trained on a cosine cycle learning rate schedule. Capturing the best model of each training cycle allows to obtain multiple models settled on various local optima from cycle to cycle at the cost of training a single mode. Therefore, the snapshot ensemble boosts performance of the proposed system while keeping the drawback of expensive training of ensembles moderate. To deal with the class-imbalance of the dataset, temporal stretching and vocal tract length perturbation (VTLP) for data augmentation and the focal loss objective are used. Empirically, our system outperforms state-of-the-art systems for the prediction task of four classes (normal, crackles, wheezes, and both crackles and wheezes) and two classes (normal and abnormal (i.e. crackles, wheezes, and both crackles and wheezes)) and achieves 78.4% and 83.7% ICBHI specific micro-averaged accuracy, respectively. The average accuracy is repeated on ten random splittings of 80% training and 20% testing data using the ICBHI 2017 dataset of respiratory cycles.
[
2022\2022m09d05_9_45_8Lung_Sound_Classification_Using_Snapshot_Ensemble_of_Convolutional_Neural_Networks.pdf
]
© Đại học Đà Nẵng
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn