Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 112,298,152

 Robust acoustic scene classification using a multi-spectrogram encoder-decoder framework
Tác giả hoặc Nhóm tác giả: Lam Pham, Huy Phan, Truc Nguyen, Ramaswamy Palaniappan, Alfred Mertins, Ian McLoughlin
Nơi đăng: Digital Signal Processing, Elsevier; Số: https://doi.org/10.1016/j.dsp.2020.102943;Từ->đến trang: volume 110;Năm: 2021
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
ABSTRACT
This article proposes an encoder-decoder network model for Acoustic Scene Classification (ASC), the task of identifying the scene of an audio recording from its acoustic signature. We make use of multiple low-level spectrogram features at the front-end, transformed into higher level features through a well-trained CNN-DNN front-end encoder. The high-level features and their combination (via a trained feature combiner) are then fed into different decoder models comprising random forest regression, DNNs and a mixture of experts, for back-end classification. We conduct extensive experiments to evaluate the performance of this framework on various ASC datasets, including LITIS Rouen and IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE) 2016 Task 1, 2017 Task 1, 2018 Tasks 1A & 1B and 2019 Tasks 1A & 1B. The experimental results highlight two main contributions; the first is an effective method for high-level feature extraction from multi-spectrogram input via the novel CNN-DNN architecture encoder network, and the second is the proposed decoder which enables the framework to achieve competitive results on various datasets. The fact that a single framework is highly competitive for several different challenges is an indicator of its robustness for performing general ASC tasks.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn