Home
Giới thiệu
Tài khoản
Đăng nhập
Quên mật khẩu
Đổi mật khẩu
Đăng ký tạo tài khoản
Liệt kê
Công trình khoa học
Bài báo trong nước
Bài báo quốc tế
Sách và giáo trình
Thống kê
Công trình khoa học
Bài báo khoa học
Sách và giáo trình
Giáo sư
Phó giáo sư
Tiến sĩ
Thạc sĩ
Lĩnh vực nghiên cứu
Tìm kiếm
Cá nhân
Nội dung
Góp ý
Hiệu chỉnh lý lịch
Thông tin chung
English
Đề tài NC khoa học
Bài báo, báo cáo khoa học
Hướng dẫn Sau đại học
Sách và giáo trình
Các học phần và môn giảng dạy
Giải thưởng khoa học, Phát minh, sáng chế
Khen thưởng
Thông tin khác
Tài liệu tham khảo
Hiệu chỉnh
Số người truy cập: 112,298,152
Characterization scheme for property prediction of fluid fractions originating from biomass
Tác giả hoặc Nhóm tác giả:
Thanh-Binh Nguyen, Jean-Charles de Hemptinne, Benoit Creton, Georgios M. Kontogeorgis
Nơi đăng:
Energy & Fuels;
S
ố:
29;
Từ->đến trang
: 7230-7241;
Năm:
2015
Lĩnh vực:
Khoa học;
Loại:
Bài báo khoa học;
Thể loại:
Quốc tế
TÓM TẮT
The composition of industrial fluids is often very difficult to identify from the molecular point of view. In the petroleum industry, the use of the so-called “pseudo-components” is commonly accepted in process modeling, and various approaches exist to determine and/or construct them. We have identified and summarized four such approaches, generally based on experimental information such as boiling temperature and density. Fluids that originate from biomass, however, cannot be treated using only volatility, because of the highly polar character and the high molecular weight of its components, resulting in highly nonideal phase equilibrium behavior. In this work, it is proposed to use a more complete set of experimental descriptors in order to determine the chemical structure of an unknown fluid cut. The definition of such a representative molecule (surrogate) makes it possible to use group contribution or other predictive tools for property calculations or characteristic parameters of an equation of state. In order to achieve this goal, a large database of monofunctional molecules (including alcohols, n-aliphatic acids, aldehydes, ketones, aliphatic ethers, esters, n-alkylbenzenes, and alkanes) has been constructed, which contains a number of descriptors originating from analytical measurements. Using physical insight on the molecular interactions, an algorithm is proposed that uses five descriptors (molecular weight, liquid molar volume, viscosity, refractive index, and dielectric constant) in order to reconstruct a representative molecule.
ABSTRACT
The composition of industrial fluids is often very difficult to identify from the molecular point of view. In the petroleum industry, the use of the so-called “pseudo-components” is commonly accepted in process modeling, and various approaches exist to determine and/or construct them. We have identified and summarized four such approaches, generally based on experimental information such as boiling temperature and density. Fluids that originate from biomass, however, cannot be treated using only volatility, because of the highly polar character and the high molecular weight of its components, resulting in highly nonideal phase equilibrium behavior. In this work, it is proposed to use a more complete set of experimental descriptors in order to determine the chemical structure of an unknown fluid cut. The definition of such a representative molecule (surrogate) makes it possible to use group contribution or other predictive tools for property calculations or characteristic parameters of an equation of state. In order to achieve this goal, a large database of monofunctional molecules (including alcohols, n-aliphatic acids, aldehydes, ketones, aliphatic ethers, esters, n-alkylbenzenes, and alkanes) has been constructed, which contains a number of descriptors originating from analytical measurements. Using physical insight on the molecular interactions, an algorithm is proposed that uses five descriptors (molecular weight, liquid molar volume, viscosity, refractive index, and dielectric constant) in order to reconstruct a representative molecule.
© Đại học Đà Nẵng
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn