Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 112,298,152

 Dynamic stability analysis of a hybrid wave and photovoltaic power generation system integrated into a distribution power grid
Tác giả hoặc Nhóm tác giả: Li Wang, Quang-Son Vo, and Anton V. Prokhorov
Nơi đăng: IEEE Transactions on Sustainable Energy, (SCIE); Số: vol. 8, no. 1;Từ->đến trang: 404-413;Năm: 2017
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
This paper evaluates the dynamic stability of a hybrid wave and photovoltaic (PV) power generation system integrated into a distribution power grid. The wave power-generation system (WPGS) is simulated by a linear permanent magnet generator driven by an Archimedes wave swing (AWS). The outputs of the WPGS and the PV system are connected to a common dc link through a voltage-source converter (VSC) and a dc/dc boost converter, respectively. The common dc link is interfaced to the distribution power grid via a voltage-source inverter (VSI). A supercapacitor (SC) is utilized to smooth the generated power delivered to the distribution power grid. This paper proposes a control scheme to maintain stable operation of the studied system while achieving maximum power extractions for the wave system and the PV system. Both root-loci analysis of the system eigenvalues under various operating conditions and the time-domain simulation results of the studied system subject to disturbance conditions are presented to demonstrate and verify the effectiveness of the SC combined with the proposed control scheme on performance improvement of the studied hybrid wave and PV system.
ABSTRACT
This paper evaluates the dynamic stability of a hybrid wave and photovoltaic (PV) power generation system integrated into a distribution power grid. The wave power-generation system (WPGS) is simulated by a linear permanent magnet generator driven by an Archimedes wave swing (AWS). The outputs of the WPGS and the PV system are connected to a common dc link through a voltage-source converter (VSC) and a dc/dc boost converter, respectively. The common dc link is interfaced to the distribution power grid via a voltage-source inverter (VSI). A supercapacitor (SC) is utilized to smooth the generated power delivered to the distribution power grid. This paper proposes a control scheme to maintain stable operation of the studied system while achieving maximum power extractions for the wave system and the PV system. Both root-loci analysis of the system eigenvalues under various operating conditions and the time-domain simulation results of the studied system subject to disturbance conditions are presented to demonstrate and verify the effectiveness of the SC combined with the proposed control scheme on performance improvement of the studied hybrid wave and PV system.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn