Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 107,286,144

 Analytical and mesh-free approaches to dynamic analysis and active control
of smart FGP-GPLRC beam
Tác giả hoặc Nhóm tác giả: Do Minh Duc, Tran Quang Hung, Tran Minh Tu
Nơi đăng: Structures, Journal-Elsevier publisher; Số: 56;Từ->đến trang: 105020;Năm: 2023
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
This paper aims to perform the dynamic analysis and active control of a functionally graded porous beam reinforced with graphene platelets (GPLs) and embedded in piezoelectric layers (smart FGP-GPLRC beam). Two types of porosity distribution combined with three dispersions of GPL pattern for the FGP-GPLRC beam are considered. The Halpin–Tsai model is used for estimating the effective elastic modulus of the FGP-GPLRC beam. The linear electric potential field through the thickness of each piezoelectric layer is assumed. Energy principles are applied to establish the equations of motion, which are then solved by two approaches. The first one is an
analytical method with the Navier technique and the second one is a mesh-free method based on the polynomial basis in conjunction with the C1 Hermite interpolation technique. Newmark’s integration algorithm with constant average acceleration is employed to determine the time-dependent response. The velocity feedback control algorithm is utilized to actively control the vibration response of the smart FGP-GPLRC beam. The convergence of mesh-free analysis is performed through a numerical test. Various comparative examples are carried out rigorously to verify the accuracy of the current study. Influences of porosity and GPL parameters, open- and
closed-circuit states on the natural frequency, and forced vibration of the smart beam are investigated via numerical examples. In addition, the study also examines the effects of velocity feedback control gain on vibration suppression and the prevention of the beat and resonance problems occurring in the smart beam. Finally, the solution of using a collocated piezoelectric sensor/actuator pair on the same side of the FGP-GPLRC beam to guarantee the stability of the vibration control with the stretching-bending coupling effect is illustrated.
ABSTRACT
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn