Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 106,999,198

 Radiation Simulation for Air and Oxy-fuel Combustion using Computational Fluid Dynamics
Tác giả hoặc Nhóm tác giả: H. N. Huynh
Nơi đăng: White Rose; Số: Thesis (PhD);Từ->đến trang: 235;Năm: 2018
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT

ABSTRACT
Coal consumption is predicted to account for about 21% of the total global primary energy in 2040 and this continues to be a challenge for global warming and air pollution. Oxyfuel combustion is one of the leading options for carbon capture and storage (CCS) technologies to reduce the impact on the environment. Initially this technology has been studied successfully on small-scale facilities but it needs to be developed for large-scale applications. CFD has been demonstrated to be a key tool for the development and optimisation of pulverised coal combustion processes and it is still an important tool for new designs and retro-fitting of conventional power plants for oxyfuel combustion. Radiation heat transfer plays an important role, influencing the overall combustion efficiency, pollutant formation and flame ignition and propagation. This thesis focuses on the radiation properties of the particles as well as gas property models on the overall influence of the prediction of the formation of NOx pollutants in pulverised coal combustion. The radiative properties of the particles are investigated with a focus on the effect of the optical properties and approximate solutions to determine the radiative properties, with different experimental data for the optical properties and approximate solutions being employed. The effects of the radiative properties on the radiative heat transfer are investigated in three dimensional enclosures for small and large-scale furnaces and implemented on a 250 kW pilot scale combustion for both air and oxyfuel conditions. The results from the study highlights the best selection for the particle properties for simulations in small and large-scale pulverised coal furnaces and employing radiation models for the gases and particles to improve the NOx predictions in pulverised coal combustion under air and oxy-fired environments.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn