Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 75,104,053

 Interval Forecasting of Financial Time Series by Accelerated Particle Swarm-Optimized Multi-Output Machine Learning System
Tác giả hoặc Nhóm tác giả: Jui-Sheng Chou ; Dinh-Nhat Truong ; Thuy-Linh Le
Nơi đăng: Tạp chí khoa học IEEE Access; Số: 8;Từ->đến trang: 14798 - 14808;Năm: 2020
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
By providing a range of values rather than a point estimate, accurate interval forecasting is critical to the success of investment decisions in exchange rate markets. This work proposes a sliding-window metaheuristic optimization for interval-valued time series forecasting using multi-output least squares support vector regression (MLSSVR). The hyperparameters in MLSSVR are finetuned using an accelerated particle swarm optimization algorithm to yield the best predictions and fastest convergence. The proposed system has a graphical user interface that is developed in a computing environment and functions as a stand-alone application. The system is validated using stock prices as well as exchange rates and outputs are compared with published results. Finally, the proposed interval time series prediction method is tested in two case studies; one involves the daily Australian dollar and Japanese yen rates (AUD/JPY) and the other involves US dollar and Canadian dollar rates (USD/CAD). The proposed model is promising for interval time series forecasting.
ABSTRACT
By providing a range of values rather than a point estimate, accurate interval forecasting is critical to the success of investment decisions in exchange rate markets. This work proposes a sliding-window metaheuristic optimization for interval-valued time series forecasting using multi-output least squares support vector regression (MLSSVR). The hyperparameters in MLSSVR are finetuned using an accelerated particle swarm optimization algorithm to yield the best predictions and fastest convergence. The proposed system has a graphical user interface that is developed in a computing environment and functions as a stand-alone application. The system is validated using stock prices as well as exchange rates and outputs are compared with published results. Finally, the proposed interval time series prediction method is tested in two case studies; one involves the daily Australian dollar and Japanese yen rates (AUD/JPY) and the other involves US dollar and Canadian dollar rates (USD/CAD). The proposed model is promising for interval time series forecasting.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn