Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 53,037,239

 A Fast Non-Empirical Tropical Cyclone Identification Method
Tác giả hoặc Nhóm tác giả: Norihiko Sugimoto, Minh Tuan Pham, Kanta Tachibana, Tomohiro Yoshikawa, and Takeshi Furuhashi
Nơi đăng: Springer-Verlag US
marriage affairs open i want an affair
; Số: 978-0-387-09409-0;Từ->đến trang: 251-263;Năm: 2008
Lĩnh vực: Công nghệ thông tin; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
We propose a high speed non-empirical method to detect centers of tropical cyclones, which is useful to identify tropical cyclones in huge climatology data. In this method, centers of tropical cyclones are detected automatically by iteration of streamline in down-stream direction from some initial positions. We also bend the path of streamline successively to converge on the center of tropical cyclone rapidly. Since this method is free from empirical conditions used in the conventional method, the accuracy is independent of these conditions. Moreover, because the proposed method does not need to check these at all grid points, computational cost is significantly reduced. We compare the accuracy and effectiveness of the method with those of the conventional one for tropical cyclone identification task in observational data. Our method could find almost all tropical cyclones, some of which were not identified by the conventional method. This method will be useful for future huge climatology data, since computational cost does not depend on the number of grid points.
abortion stories gone wrong how to abort at home teenage abortion facts
ABSTRACT
We propose a high speed non-empirical method to detect centers of tropical cyclones, which is useful to identify tropical cyclones in huge climatology data. In this method, centers of tropical cyclones are detected automatically by iteration of streamline in down-stream direction from some initial positions. We also bend the path of streamline successively to converge on the center of tropical cyclone rapidly. Since this method is free from empirical conditions used in the conventional method, the accuracy is independent of these conditions. Moreover, because the proposed method does not need to check these at all grid points, computational cost is significantly reduced. We compare the accuracy and effectiveness of the method with those of the conventional one for tropical cyclone identification task in observational data. Our method could find almost all tropical cyclones, some of which were not identified by the conventional method. This method will be useful for future huge climatology data, since computational cost does not depend on the number of grid points.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn