Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 54,486,791

 Feature Extraction with Space Folding Model and its Application to Machine Learning
Tác giả hoặc Nhóm tác giả: Minh Tuan Pham, Tomohiro Yoshikawa, Takeshi Furuhashi and Kanta Tachibana
walgreens pharmacy coupon site promo codes walgreens
Nơi đăng: Journal of Advanced Computational Intelligence & Intelligent Informatics
cvs weekly sale cvs print prescription savings cards
; Số: 15(6);Từ->đến trang: 662-670;Năm: 2011
Lĩnh vực: Chưa xác định; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Feature extraction provides an essential element in most machine learning methods, including supervised learning with neural networks. Linearly inseparable data distributions are often non-linearly transformed in some way to make them more linearly separable in the feature space. In this paper, we propose a method of feature extraction with a space folding model. In the proposed method, each basis vector in the m-dimensional data space is divided in the positive and negative directions to optimize it with 2m m-dimensional vectors as variables. 2mvariable vectors are estimated to minimize the cross entropy of class labels and distances so that instances in the same classes are gathered closer together and those in other classes are separated farther apart. The proposed method, in which linear transformation is applied to each quadrant to collectively realize a nonlinear transformation, is expected to lead to improvements in accuracy of discrimination over conventional methods of feature extraction using single linear transformations. In this paper, we have confirmed the effectiveness of the proposed method of feature extraction with a space folding model on a UCI benchmark problem.
ABSTRACT
Feature extraction provides an essential element in most machine learning methods, including supervised learning with neural networks. Linearly inseparable data distributions are often non-linearly transformed in some way to make them more linearly separable in the feature space. In this paper, we propose a method of feature extraction with a space folding model. In the proposed method, each basis vector in the m-dimensional data space is divided in the positive and negative directions to optimize it with 2m m-dimensional vectors as variables. 2mvariable vectors are estimated to minimize the cross entropy of class labels and distances so that instances in the same classes are gathered closer together and those in other classes are separated farther apart. The proposed method, in which linear transformation is applied to each quadrant to collectively realize a nonlinear transformation, is expected to lead to improvements in accuracy of discrimination over conventional methods of feature extraction using single linear transformations. In this paper, we have confirmed the effectiveness of the proposed method of feature extraction with a space folding model on a UCI benchmark problem.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn