Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 60,604,208

 Hybrid Artificial Intelligence Based on Evolutionary Approach in Optimizing Multiple Resources of Projects
Tác giả hoặc Nhóm tác giả: Thi Minh-Truc Huynh, Duc-Hoc Tran, Thi Thao-Nguyen Nguyen, Quynh Chau Truong
Nơi đăng: International organization of Scientific Research; ISSN (e): 2250-3021, ISSN (p): 2278-8719; Số: Vol. 06, Issue 06 (June. 2016);Từ->đến trang: PP 46-53;Năm: 2016
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Abstract: - Resource leveling problems are attractive and important part of construction project planning. Resource leveling is the process used within project scheduling to reduce fluctuations in resource usage over the period of project implementation. This study presents a new hybrid intelligence model, named as Artificial Bee Colony with Differential Evolution, to handle the multiple resources leveling in multiple projects problems (ABCDE-MRLMP). The proposed algorithm integrates crossover operation from differential evolution (DE) with original artificial bee colony (ABC) to balance exploration and exploitation phase of the optimization process. The ABCDE-MRLMP algorithm is compared with benchmark algorithms considered and previous findings using two construction case studies. The experimental results demonstrate the efficiency and effectiveness of the proposed model. The ABCDE-MRLMP is a promising alternative approach to handling resource leveling project scheduling problems. Keywords: - Multiple resources levelling, Scheduling, Artificial Bee Colony, Optimization, Differential Evolution, Construction management
ABSTRACT
Abstract: - Resource leveling problems are attractive and important part of construction project planning. Resource leveling is the process used within project scheduling to reduce fluctuations in resource usage over the period of project implementation. This study presents a new hybrid intelligence model, named as Artificial Bee Colony with Differential Evolution, to handle the multiple resources leveling in multiple projects problems (ABCDE-MRLMP). The proposed algorithm integrates crossover operation from differential evolution (DE) with original artificial bee colony (ABC) to balance exploration and exploitation phase of the optimization process. The ABCDE-MRLMP algorithm is compared with benchmark algorithms considered and previous findings using two construction case studies. The experimental results demonstrate the efficiency and effectiveness of the proposed model. The ABCDE-MRLMP is a promising alternative approach to handling resource leveling project scheduling problems. Keywords: -Multiple resources levelling, Scheduling, Artificial Bee Colony, Optimization, Differential Evolution, Construction management
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn