Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 75,104,053

 On the consistent two-side estimates for the solutions of quasilinear convection–diffusion equations and their approximations on non-uniform grids
Tác giả hoặc Nhóm tác giả: Piotr Matus, Dmitriy Poliakov, Le Minh Hieu
Nơi đăng: Journal of Computational and Applied Mathematics (SCI); Số: 340 (1 October 2018);Từ->đến trang: 571-581;Năm: 2018
Lĩnh vực: Tự nhiên; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
A new second-order in space linearized difference scheme on non-uniform grid that approximates the Dirichlet problem for multidimensional quasilinear convection–diffusion equation with unbounded nonlinearity is constructed. Proposed algorithm is a novel nonlinear generalization of difference schemes for linear problems developed earlier by the authors. Nontrivial two-side pointwise estimates of the solution of the scheme fully consistent with the corresponding estimates for the differential problem are established. Such estimates permit to prove the nonnegativity of the exact solution, important in physical problems, and also to find sufficient conditions on the input data when the nonlinear problem is parabolic. As a result a priori estimates of the approximate solution in the grid norm C that depend on the initial and boundary conditions and on the right-hand side only are proved.
ABSTRACT
A new second-order in space linearized difference scheme on non-uniform grid that approximates the Dirichlet problem for multidimensional quasilinear convection–diffusion equation with unbounded nonlinearity is constructed. Proposed algorithm is a novel nonlinear generalization of difference schemes for linear problems developed earlier by the authors. Nontrivial two-side pointwise estimates of the solution of the scheme fully consistent with the corresponding estimates for the differential problem are established. Such estimates permit to prove the nonnegativity of the exact solution, important in physical problems, and also to find sufficient conditions on the input data when the nonlinear problem is parabolic. As a result a priori estimates of the approximate solution in the grid norm C that depend on the initial and boundary conditions and on the right-hand side only are proved.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn