Thông tin chung


  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

Số người truy cập: 60,661,138

 Fuzzy Semi-active Control of Multi-degree-of-freedom Structure using Magnetorheological Elastomers
Tác giả hoặc Nhóm tác giả: Nguyen Xuan Bao; Toshihiko Komatsuzaki; Yoshio Iwata; Haruhiko Asanuma
Nơi đăng: ASME Proceedings; Số: ASME 2017 Pressure Vessels and Piping Conference Volume 8: Seismic Engineering;Từ->đến trang: 1-10;Năm: 2017
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
Điều khiển mờ bán chủ động hệ nhiều bật tự do sử dụng vật liệu lưu biến từ đàn hồi
Magnetorheological elastomer (MRE), used in semi-active control, has recently emerged as a smart material that could potentially improve traditional systems in controlling structural vibrations. This study considers two main issues concerning the application of an MRE. The first issue is the modelling and identification of the viscoelastic property, and the second is the formulation of an effective control strategy based on the fuzzy logic system. Firstly, a nonlinear dynamic MRE model was developed to simulate the dynamic behavior of MRE. In this model, the viscoelastic force of the material as an output was calculated from displacement, frequency, and magnetic flux density as inputs. The MRE model consisted of three components including the viscoelasticity of host elastomer, magnetic field-induced property, and interfacial slippage that were modeled by analogy with a standard linear solid model (Zener model), a stiffness variable spring, and a smooth Coulomb friction, respectively. The model parameters were identified by manipulating two sets of data that were measured by changing applied electric current and harmonic excitation frequency. A good agreement was obtained between numerical and experimental results. The proposed model offers a beneficial solution to numerically investigate vibration control strategies. Secondly, a fuzzy semi-active controller was designed for seismic protection of building with an MRE-based isolator. The control strategy was designed to determine the command applied current. The proposed strategy is fully adequate to the nonlinearity of the isolator and works independently with the building structure. The efficiency of the proposed fuzzy semi-active controller was investigated numerically by MATLAB simulations, whose performance was compared with that of passive systems and a system with traditional semi-active controller. Numerical results show that the developed fuzzy semi-active controller not only mitigates the responses of both the base floor and the superstructure, but also has an ability to control structural vibrations adaptively to the different intensity ground motions.
[ 2019\2019m02d017_13_18_8PVP2017-65156-Final_14-4.pdf ]
© Đại học Đà Nẵng
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: