Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 107,118,404

 Novel carrier for seafood wastewater treatment using moving bed biofilm reactor system
Tác giả hoặc Nhóm tác giả: T.Anh Phan, Tung Ngoc Pham, The Hy Duong, Hoang M. Nguyen
Nơi đăng: Environmental Engineering Research; Số: 28(5): 220508.;Từ->đến trang: 1-11;Năm: 2023
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
In this work, seafood wastewater was treated by using MBBR reactor over a novel carrier (PUF-PVA gel) derived from the combination of a porous (PUF) and hydrophilic surface (PVA gel). A freezing-thawing method was used for the preparation of the novel PUF-PVA gel which is reported for the first time. Experimental results indicated that PUF-PVA gel carrier which possesses an excellent textural structure (specific surface area of 3.4 m2/g, pore size in the range of 10 – 40 μm and hydrophilic surface) accounts for faster water immersion and better microbial adhesion, resulting in the biofilm content attached at the start-up stage 2.4 times higher relative to conventional PUF carrier alone. The MBBR system can be operated stably at a hydraulic retention time (HRT) of 7 hours in which the organic loading rate ranged from 2.5 kg COD/m3.day to 5.1 kg COD/m3.day. When operated at the organic loading rate of 2.5 kg COD/m3.day, the maximum COD and the nitrogen removal efficiency of MBBR based on the PUF-PVA gel carrier were 92 ± 0.6% and 89 ± 3.4%, respectively, which is higher than that of the PUF carrier.
ABSTRACT
In this work, seafood wastewater was treated by using MBBR reactor over a novel carrier (PUF-PVA gel) derived from the combination of a porous (PUF) and hydrophilic surface (PVA gel). A freezing-thawing method was used for the preparation of the novel PUF-PVA gel which is reported for the first time. Experimental results indicated that PUF-PVA gel carrier which possesses an excellent textural structure (specific surface area of 3.4 m2/g, pore size in the range of 10 – 40 μm and hydrophilic surface) accounts for faster water immersion and better microbial adhesion, resulting in the biofilm content attached at the start-up stage 2.4 times higher relative to conventional PUF carrier alone. The MBBR system can be operated stably at a hydraulic retention time (HRT) of 7 hours in which the organic loading rate ranged from 2.5 kg COD/m3.day to 5.1 kg COD/m3.day. When operated at the organic loading rate of 2.5 kg COD/m3.day, the maximum COD and the nitrogen removal efficiency of MBBR based on the PUF-PVA gel carrier were 92 ± 0.6% and 89 ± 3.4%, respectively, which is higher than that of the PUF carrier.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn