Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 107,098,320

 Synthesis of Polyanionic Cellulose Carbamates by Homogeneous Aminolysis in an Ionic Liquid/DMF Medium
Tác giả hoặc Nhóm tác giả: Cuong Viet Bui, Thomas Rosenau, and Hubert Hettegger
Nơi đăng: Molecules, Special Issue "Polysaccharide Chemistry—a Tool for Novel, Sustainable, and Advanced Products and Materials: A Themed Issue in Honor of Prof. Dr. Thomas Heinze"; Số: 27(4);Từ->đến trang: 1384;Năm: 2022
Lĩnh vực: Khoa học; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Polyanionic cellulose carbamates were synthesized by rapid and efficient homogeneous aminolysis of cellulose carbonate half-esters in an ionic liquid/DMF medium. Cellulose bis-2,3-O-(3,5-dimethylphenyl carbamate), as a model compound, reacted with different chloroformates to cellulose carbonates. These intermediates were subjected to aminolysis, for which both the reactivity of different chloroformates towards C6-OH and the reactivity/suitability of the respective carbonate half-ester in the aminolysis were comprehensively studied. Phenyl chloroformate and 4-chlorophenyl chloroformate readily reacted with C6-OH of the model cellulose derivative, while 4-nitrophenyl chloroformate did not. The intermediate 4-chlorophenyl carbonate derivative with the highest DS (1.05) was then used to evaluate different aminolysis pathways, applying three different amines (propargyl amine, β-alanine, and taurine) as reactants. The latter two zwitterionic compounds are only sparingly soluble in pure DMF as the typical reaction medium for aminolysis; therefore, several alternative procedures were suggested, carefully evaluated, and critically compared. Solubility problems with β-alanine and taurine were overcome by the binary solvent system DMF/[EMIM]OAc (1:1, v/v), which was shown to be a promising medium for rapid and efficient homogeneous aminolysis and for the preparation of the corresponding cellulose carbamate derivatives or other compounds that are not accessible by conventional isocyanate chemistry. The zwitterionic cellulose carbamate derivatives presented in this work could be promising chiral cation exchangers for HPLC enantiomer separations.
ABSTRACT
Polyanionic cellulose carbamates were synthesized by rapid and efficient homogeneous aminolysis of cellulose carbonate half-esters in an ionic liquid/DMF medium. Cellulose bis-2,3-O-(3,5-dimethylphenyl carbamate), as a model compound, reacted with different chloroformates to cellulose carbonates. These intermediates were subjected to aminolysis, for which both the reactivity of different chloroformates towards C6-OH and the reactivity/suitability of the respective carbonate half-ester in the aminolysis were comprehensively studied. Phenyl chloroformate and 4-chlorophenyl chloroformate readily reacted with C6-OH of the model cellulose derivative, while 4-nitrophenyl chloroformate did not. The intermediate 4-chlorophenyl carbonate derivative with the highest DS (1.05) was then used to evaluate different aminolysis pathways, applying three different amines (propargyl amine, β-alanine, and taurine) as reactants. The latter two zwitterionic compounds are only sparingly soluble in pure DMF as the typical reaction medium for aminolysis; therefore, several alternative procedures were suggested, carefully evaluated, and critically compared. Solubility problems with β-alanine and taurine were overcome by the binary solvent system DMF/[EMIM]OAc (1:1, v/v), which was shown to be a promising medium for rapid and efficient homogeneous aminolysis and for the preparation of the corresponding cellulose carbamate derivatives or other compounds that are not accessible by conventional isocyanate chemistry. The zwitterionic cellulose carbamate derivatives presented in this work could be promising chiral cation exchangers for HPLC enantiomer separations.
[ molecules-27-01384.pdf ]
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn