Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 106,666,087

 Ultimate bearing capacity of rigid footing under eccentric vertical load
Tác giả hoặc Nhóm tác giả: Pham N. Quang*, Ohtsuka Satoru, Isobe Koichi, Fukumoto Yutaka, Hoshina Takashi
Nơi đăng: Soils and Foundations (ISSN: 0038-0806, SCIE-Q1-IF=3.7), DOI:10.1016/j.sandf.2019.09.004; Số: Vol. 59 (6);Từ->đến trang: 1980-1991;Năm: 2019
Lĩnh vực: Chưa xác định; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
ABSTRACT
In geotechnical engineering, the stability of rigid footings under eccentric vertical loads is an important issue. This is because the number of superstructure buildings has increased and the situation of structures being subjected to eccentric vertical loading is occurring more and more frequently. In this study, focus is placed on the ultimate bearing capacity of a footing against the eccentric load placed on two types of soil, namely, sandy soil and clayey soil, using a finite element analysis. For the sandy soil, the study newly introduces an interface element into the footing-soil system in order to properly evaluate the interaction between the footing and the soil, which greatly affects the failure mechanism of the footing-soil system. For the clayey soil, the study improves the analysis procedure by introducing a zero-tension analysis into the footing-soil system. Two friction conditions between the footing and the soils are considered; one models a perfectly rough condition and the other models a perfectly smooth condition. For a two-dimensional analysis of the footing-soil system, the rigid plastic finite element method (RPFEM) is applied to calculate the ultimate bearing capacity of the eccentrically loaded footing. The RPFEM is extended in this work to calculate not only the ultimate bearing capacity, but also the distribution of contact stress along the footing base. The study thoroughly investigates the effect of the eccentric vertical load on the ultimate bearing capacity in the normalized form of V/Vult and e/B where e is the length of the eccentricity and B is the width of the footing. Vult indicates the ultimate bearing capacity for the centric vertical load. The failure envelope in the plane of V/Vult and M/BVult is further investigated under various conditions for the sandy and clayey soils. M is the moment load induced by the eccentric vertical load. This study examines the applicability of the failure envelope obtained for the eccentric vertical load to the cases where two variables, V and M, are independently prescribed. The obtained results are coincident and indicate the wide applicability of the failure envelope in the normalized V-M plane in practice. Finally, in a comparison with previous researches, the numerical data in the present study lead to the derivation of new equations for the failure envelopes of both sandy and clayey soils.
[ 2. ultimate bearing capacity of rigid footing under eccentric vertical load-2019.pdf ]
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn