Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 52,838,642

 Consensus-based distributed estimation of Laplacian eigenvalues of undirected graphs
walgreens prints coupons open free printable coupons
Tác giả hoặc Nhóm tác giả: Tran, Thi Minh Dung and Alain Kibangou
Nơi đăng: European Control Conference (ECC), Zurich, Switzerland; Số: -;Từ->đến trang: 227-232;Năm: 2013
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
ABSTRACT
n this paper, we present a novel algorithm for estimating eigenvalues of the Laplacian matrix associated with the graph describing the network topology of a multi-agent system or a wireless sensor network. As recently shown, the average consensus matrix can be written as a product of Laplacian based consensus matrices whose stepsizes are given by the inverse of the nonzero Laplacian eigenvalues. Therefore, by solving the factorization of the average consensus matrix, we can infer the Laplacian eigenvalues. We show how solving such a matrix factorization problem in a distributed way. In particular, we formulate the problem as a constrained consensus problem. The proposed algorithm does not require great resources in both computation and storage. This algorithm can also be viewed as a way for decentralizing the design of finite-time average consensus protocol recently proposed in the literature. Eventually, the performance of the proposed algorithm is evaluated by means of simulation results.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn