Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 36,912,219

 Stability Improvement of a Multimachine Power System Connected with a Large-Scale Hybrid Wind-Photovoltaic Farm Using a Supercapacitor
Tác giả hoặc Nhóm tác giả: Li Wang, Quang-Son Vo, Anton V. Prokhorov
Nơi đăng: IEEE Transactions on Industry Applications (SCIE); Số: Vol. 54, No. 1;Từ->đến trang: 50-60;Năm: 2018
Lĩnh vực: Môi trường; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
This paper presents the stability improvement of a multimachine power system connected with a large-scale hybrid wind-photovoltaic (PV) farm using an energy-storage unit based on supercapacitor (SC). The operating characteristics of the hybrid wind-PV farm are simulated by an equivalent aggregated 300-MW wind-turbine generator (WTG) based on permanent-magnet synchronous generator and an equivalent aggregated 75-MW PV array. The WTG and the PV array are connected to a common dc link through a voltage-source converter and a dc/dc boost converter, respectively. The power of the common dc link is transferred to the multimachine power system through a voltage-source inverter, step-up transformers, and a connection line. The SC-based energy-storage unit, which is integrated into the common dc link through a bidirectional dc/dc converter, is employed for smoothing out the power fluctuations due to variations of wind speed and/or solar irradiance. A proportional-integral-derivative (PID)-supplementary damping controller (PID-SDC) is designed for the bidirectional dc/dc converter of the SC to enhance the damping characteristics of the low-frequency oscillations associated with the studied multimachine power system. The root loci of the studied system are examined under wide ranges of wind speed and solar irradiance. The effectiveness of the proposed SC joined with the PID-SDC on improving the performance of the studied system under different disturbance conditions is also demonstrated using time-domain simulations.
ABSTRACT
This paper presents the stability improvement of a multimachine power system connected with a large-scale hybrid wind-photovoltaic (PV) farm using an energy-storage unit based on supercapacitor (SC). The operating characteristics of the hybrid wind-PV farm are simulated by an equivalent aggregated 300-MW wind-turbine generator (WTG) based on permanent-magnet synchronous generator and an equivalent aggregated 75-MW PV array. The WTG and the PV array are connected to a common dc link through a voltage-source converter and a dc/dc boost converter, respectively. The power of the common dc link is transferred to the multimachine power system through a voltage-source inverter, step-up transformers, and a connection line. The SC-based energy-storage unit, which is integrated into the common dc link through a bidirectional dc/dc converter, is employed for smoothing out the power fluctuations due to variations of wind speed and/or solar irradiance. A proportional-integral-derivative (PID)-supplementary damping controller (PID-SDC) is designed for the bidirectional dc/dc converter of the SC to enhance the damping characteristics of the low-frequency oscillations associated with the studied multimachine power system. The root loci of the studied system are examined under wide ranges of wind speed and solar irradiance. The effectiveness of the proposed SC joined with the PID-SDC on improving the performance of the studied system under different disturbance conditions is also demonstrated using time-domain simulations.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0511 3822 041 ; Email: dhdn@ac.udn.vn