Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 107,375,522

 Mô hình vật lý tỉ lệ thực và mô hình số tường chắn đất có cốt với lưới cốt tự chế tạo phù hợp đất dính ở Việt Nam
Tác giả hoặc Nhóm tác giả: Truong-Linh Chau Thu-Ha Nguyen Van-Ngoc Pham
Nơi đăng: Applied Sciences ISSN: 2076-3417 (SCIE-Q2); Số: Vol. 14(9);Từ->đến trang: 1283;Năm: 2024
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Mechanically stabilized earth (MSE) walls have been widely applied in construction to maintain the stability of high embankments. In Vietnam, imported reinforcement materials are expensive; thus, finding locally available materials for MSE walls is beneficial. This study examines the behavior of an MSE wall using local reinforcement materials in Danang, Vietnam. The MSE was reinforced by self-fabricated galvanized steel grids using CB300V steel with 3 cm ribs. The backfill soil was sandy clay soil from the local area with a low cohesion. A full-scale model with full instrumentation was installed to investigate the distribution of tensile forces along the reinforcement layers. The highest load that caused the wall to collapse due to internal instability (reinforcement rupture) was 302 kN/m2, which is 15 times greater than the design load of 20 kN/m2. The failure surface within the reinforced soil had a parabolic sliding shape that was similar to the theoretical studies. At the failure load level, the maximum lateral displacement at the top of the wall facing was small (3.9 mm), significantly lower than the allowable displacement for a retaining wall. Furthermore, a numerical model using FLAC software 7.0 was applied to simulate the performance of the MSE wall. The modeling results were in good agreement with the physical model. Thus, self-fabricated galvanized steel grids could confidently be used in combination with the local backfill soil for MSE walls.KeywordsMSE wall; self-fabricated steel reinforcement grids; tensile forces; lateral displacement of the wall facing; failure surface; full-scale model; numerical model
ABSTRACT
Mechanically stabilized earth (MSE) walls have been widely applied in construction to maintain the stability of high embankments. In Vietnam, imported reinforcement materials are expensive; thus, finding locally available materials for MSE walls is beneficial. This study examines the behavior of an MSE wall using local reinforcement materials in Danang, Vietnam. The MSE was reinforced by self-fabricated galvanized steel grids using CB300V steel with 3 cm ribs. The backfill soil was sandy clay soil from the local area with a low cohesion. A full-scale model with full instrumentation was installed to investigate the distribution of tensile forces along the reinforcement layers. The highest load that caused the wall to collapse due to internal instability (reinforcement rupture) was 302 kN/m2, which is 15 times greater than the design load of 20 kN/m2. The failure surface within the reinforced soil had a parabolic sliding shape that was similar to the theoretical studies. At the failure load level, the maximum lateral displacement at the top of the wall facing was small (3.9 mm), significantly lower than the allowable displacement for a retaining wall. Furthermore, a numerical model using FLAC software 7.0 was applied to simulate the performance of the MSE wall. The modeling results were in good agreement with the physical model. Thus, self-fabricated galvanized steel grids could confidently be used in combination with the local backfill soil for MSE walls.KeywordsMSE wall; self-fabricated steel reinforcement grids; tensile forces; lateral displacement of the wall facing; failure surface; full-scale model; numerical model
[ applsci-14-01283_published.pdf ]
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn