Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 75,104,053

 The effect of the partial cement substitution with fly ash on delayed ettringite formation in heat-cured mortars
Tác giả hoặc Nhóm tác giả: Nordine Leklou, Van-Huong Nguyen, Pierre Mounanga
Nơi đăng: KSCE Journal of Civil Engineering,; Số: Volume 21, Issue 4;Từ->đến trang: 1359-1366;Năm: 2017
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Delayed Ettringite Formation (DEF) is seen as a form of internal sulfate attack of cementitious materials, caused by early age heating to a temperature higher than 70°C. In this paper, the effect of fly ash on delayed ettringite formation of heat-cured cementbased mortars was investigated. To fulfil the aim of this study, a portion of cement was replaced by class F-fly ash, with three different dosages (10, 20 and 30%). The mortars were heat-cured at early-age, and the tests of expansion, mechanical strength, dynamic elastic modulus, mercury porosity and thermogravimetric analysis were carried on these mortars along a period of 650 days. Additionally, Scanning Electron Microscopy (SEM) observations were realized. The results obtained highlighted the mitigation effects of fly ash on DEF: A replacement of the cement used with 20% to 30% of fly ash was efficient to eliminate the long-term swelling due to DEF. This positive impact was explained by the combined effects of the high Al2O3 content of fly ash and the portlandite consumption induced by the pozzolanic reactions.
ABSTRACT
Delayed Ettringite Formation (DEF) is seen as a form of internal sulfate attack of cementitious materials, caused by early age heating to a temperature higher than 70°C. In this paper, the effect of fly ash on delayed ettringite formation of heat-cured cementbased mortars was investigated. To fulfil the aim of this study, a portion of cement was replaced by class F-fly ash, with three different dosages (10, 20 and 30%). The mortars were heat-cured at early-age, and the tests of expansion, mechanical strength, dynamic elastic modulus, mercury porosity and thermogravimetric analysis were carried on these mortars along a period of 650 days. Additionally, Scanning Electron Microscopy (SEM) observations were realized. The results obtained highlighted the mitigation effects of fly ash on DEF: A replacement of the cement used with 20% to 30% of fly ash was efficient to eliminate the long-term swelling due to DEF. This positive impact was explained by the combined effects of the high Al2O3 content of fly ash and the portlandite consumption induced by the pozzolanic reactions.
[ 2017-5.pdf ]
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn