Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 106,949,184

 Adaptive Neural Sliding Mode Control for 3-DOF Planar Parallel Manipulators
Tác giả hoặc Nhóm tác giả: Thanh Nguyen Truong, Hee-Jun Kang and Tien Dung Le
Nơi đăng: ISCSIC 2019: Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control; Số: Article No.: 40;Từ->đến trang: 1-6;Năm: 2019
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
This paper proposes a combination between a neural network and an adaptive sliding mode control for trajectory tracking control of a 3-DOF planar parallel manipulator. It has a complicated dynamic model, including modelling uncertainties, frictional uncertainties and external disturbances. The proposed control algorithm is to use a PID sliding mode surface, an adaptive sliding mode controller with a neural network to overcome the drawback of the traditional sliding mode controllers, such as slow response rate with variation of uncertainties and external disturbances, chattering, and upper bound values of undefined dynamics which affects system performance, high wear of moving mechanical parts and high heat losses in power circuits. The radial basis function neural network is designed to compensate for uncertainties and external disturbances, which allows small switching gain. Hence, the chattering can be significantly reduced. In addition, an adaptive control law is used to adaptively converge small switching gains of the sliding mode controller as the neural network reduces model uncertainties. The effectiveness of the proposed control strategy is demonstrated by simulations which are conducted by using the combination of Sim-Mechanics and SolidWorks.
ABSTRACT
This paper proposes a combination between a neural network and an adaptive sliding mode control for trajectory tracking control of a 3-DOF planar parallel manipulator. It has a complicated dynamic model, including modelling uncertainties, frictional uncertainties and external disturbances. The proposed control algorithm is to use a PID sliding mode surface, an adaptive sliding mode controller with a neural network to overcome the drawback of the traditional sliding mode controllers, such as slow response rate with variation of uncertainties and external disturbances, chattering, and upper bound values of undefined dynamics which affects system performance, high wear of moving mechanical parts and high heat losses in power circuits. The radial basis function neural network is designed to compensate for uncertainties and external disturbances, which allows small switching gain. Hence, the chattering can be significantly reduced. In addition, an adaptive control law is used to adaptively converge small switching gains of the sliding mode controller as the neural network reduces model uncertainties. The effectiveness of the proposed control strategy is demonstrated by simulations which are conducted by using the combination of Sim-Mechanics and SolidWorks.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn