Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 38,054,752

 An Investigation on the Dynamic Response of Cable Stayed Bridge with Consideration of Three-Axle Vehicle Braking Effects
Tác giả hoặc Nhóm tác giả: Xuan-Toan Nguyen, Van-Duc Tran, and Nhat-Duc Hoang
Nơi đăng: Journal of Computational Engineering; Số: Volume 2017, Article ID 4584657;Từ->đến trang: 13 pages. ISSN: 2314-6443;Năm: 2017
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
The cable-stayed bridge (CSB) is often used to span over the large rivers on the highway with a high-level navigational clearance; however, CSB is very sensitive to live load. Most of the previous studies on vibration analysis of CSB that focus on complex traffic loading and vehicle dynamic interaction as well as on the bridge deck do not consider braking effects thoroughly. In this paper, the finite element method (FEM) is used to investigate the dynamic response of CSB due to a three-axle vehicle considering braking effects. Vertical reaction forces of axles that change with time make bending vibration of the bridge deck increase significantly. The braking in a span is able to create response in other spans, towers, and cables. In addition, the impact factors are investigated on both FEM and experiment with a case study of Pho Nam bridge (Danang city, Central Vietnam). The results of this study provide an improved understanding of the CSB dynamic behaviors, and they can be used as useful references for bridge codes by practicing engineers.
ABSTRACT
The cable-stayed bridge (CSB) is often used to span over the large rivers on the highway with a high-level navigational clearance; however, CSB is very sensitive to live load. Most of the previous studies on vibration analysis of CSB that focus on complex traffic loading and vehicle dynamic interaction as well as on the bridge deck do not consider braking effects thoroughly. In this paper, the finite element method (FEM) is used to investigate the dynamic response of CSB due to a three-axle vehicle considering braking effects. Vertical reaction forces of axles that change with time make bending vibration of the bridge deck increase significantly. The braking in a span is able to create response in other spans, towers, and cables. In addition, the impact factors are investigated on both FEM and experiment with a case study of Pho Nam bridge (Danang city, Central Vietnam). The results of this study provide an improved understanding of the CSB dynamic behaviors, and they can be used as useful references for bridge codes by practicing engineers.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn