Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 86,686,866

 Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models
Tác giả hoặc Nhóm tác giả: Jui-Sheng Chou, Thi-Phuong-Trang Pham, Thi-Kha Nguyen, Anh-Duc Pham, Ngoc-Tri Ngo
Nơi đăng: Soft Computing (Springer Berlin Heidelberg); Số: March-2020;Từ->đến trang: 01-19;Năm: 2020
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
The shear strength of reinforced concrete (RC) beams is critical in the design of structural members. Developing an effective mathematical method for accurately estimating shear strength of RC beams is beneficial for civil engineers. This work presents a hybrid artificial intelligent (AI) model for effectively predicting the shear strength of various types of RC beam. The hybrid AI model was developed by integrating an optimization algorithm [smart firefly algorithm (SFA)] and machine learning [least squares support vector regression (LSSVR)], in which the SFA was used to optimize the hyperparameters of LSSVR, improving its predictive accuracy. Three large datasets were used to train and test the hybrid AI model in predicting shear strength of RC beams. The predictive accuracy of the hybrid AI model was compared comprehensively with those of single AI models, ensemble AI models, and empirical methods. The comparison results show that the hybrid AI model outperformed the others in predicting the shear strength of a wide range of RC beam types. In particular, with the test data of RC beams without stirrups, the hybrid AI model yielded a mean absolute percentage error (MAPE) of 21.703%. In predicting shear strength of RC beams with stirrups, the hybrid AI model yielded an MAPE of 12.941%. For RC beams with FRP reinforcement, the hybrid AI model yielded an MAPE 18.951%. Therefore, this hybrid AI model can be a better alternative method to help civil engineers in designing RC beams.
ABSTRACT
The shear strength of reinforced concrete (RC) beams is critical in the design of structural members. Developing an effective mathematical method for accurately estimating shear strength of RC beams is beneficial for civil engineers. This work presents a hybrid artificial intelligent (AI) model for effectively predicting the shear strength of various types of RC beam. The hybrid AI model was developed by integrating an optimization algorithm [smart firefly algorithm (SFA)] and machine learning [least squares support vector regression (LSSVR)], in which the SFA was used to optimize the hyperparameters of LSSVR, improving its predictive accuracy. Three large datasets were used to train and test the hybrid AI model in predicting shear strength of RC beams. The predictive accuracy of the hybrid AI model was compared comprehensively with those of single AI models, ensemble AI models, and empirical methods. The comparison results show that the hybrid AI model outperformed the others in predicting the shear strength of a wide range of RC beam types. In particular, with the test data of RC beams without stirrups, the hybrid AI model yielded a mean absolute percentage error (MAPE) of 21.703%. In predicting shear strength of RC beams with stirrups, the hybrid AI model yielded an MAPE of 12.941%. For RC beams with FRP reinforcement, the hybrid AI model yielded an MAPE 18.951%. Therefore, this hybrid AI model can be a better alternative method to help civil engineers in designing RC beams.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn