Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 86,686,468

 Hybrid machine learning for predicting strength of sustainable concrete
Tác giả hoặc Nhóm tác giả: Phạm Anh Đức, Ngô Ngọc Tri, Nguyễn Quang Trung, Trương Ngọc Sơn
Nơi đăng: Soft Computing (Springer Berlin Heidelberg); Số: Vol 24, March 2020;Từ->đến trang: 01-16;Năm: 2020
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Foamed concrete material is a sustainable material which is widely used in the construction industry due to their sustainability. Accurate prediction of their compressive strength is vital for structural design. However, empirical methods are limited to consider simultaneously all influencing factors in predicting the compressive strength of foamed concrete materials. Thus, this study proposed a novel hybrid artificial intelligence (AI) model which couples the least squares support vector regression (LSSVR) with the grey wolf optimization (GWO) to consider effectively the influencing factors and improve the predictive accuracy in predicting the foamed concrete’s compressive strength. Performance of the proposed model was evaluated using a real-world dataset. Comparison results confirm that the proposed GWO–LSSVR model was superior than the support vector regression, artificial neural networks, random forest, and M5Rules with the improvement rate of 144.2–284.0% in mean absolute percentage error (MAPE). Notably, the evaluation results show that the GWO–LSSVR model showed the good agreement between the actual and predicted values with the correlation coefficient of 0.991 and MAPE of 3.54%. Thus, the proposed AI model was suggested as an effective tool for designing foamed concrete materials.
ABSTRACT
Foamed concrete material is a sustainable material which is widely used in the construction industry due to their sustainability. Accurate prediction of their compressive strength is vital for structural design. However, empirical methods are limited to consider simultaneously all influencing factors in predicting the compressive strength of foamed concrete materials. Thus, this study proposed a novel hybrid artificial intelligence (AI) model which couples the least squares support vector regression (LSSVR) with the grey wolf optimization (GWO) to consider effectively the influencing factors and improve the predictive accuracy in predicting the foamed concrete’s compressive strength. Performance of the proposed model was evaluated using a real-world dataset. Comparison results confirm that the proposed GWO–LSSVR model was superior than the support vector regression, artificial neural networks, random forest, and M5Rules with the improvement rate of 144.2–284.0% in mean absolute percentage error (MAPE). Notably, the evaluation results show that the GWO–LSSVR model showed the good agreement between the actual and predicted values with the correlation coefficient of 0.991 and MAPE of 3.54%. Thus, the proposed AI model was suggested as an effective tool for designing foamed concrete materials.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn