Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 33,243,839

 Applying Smart Meter and Data Mining Techniques to Predict Refrigeration System Performance
Tác giả hoặc Nhóm tác giả: Jui-Sheng Chou; Anh-Duc Pham
walgreens pharmacy coupon walgreen online coupons promo codes walgreens
Nơi đăng: Advances in Intelligent Systems and Computing (ISI)
walgreens pharmacy coupon link promo codes walgreens
; Số: 209;Từ->đến trang: 249-257;Năm: 2013
Lĩnh vực: Công nghệ thông tin; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
ABSTRACT
This study presents six data mining techniques for prediction of coefficient of performance (COP) for refrigeration equipment. These techniques include artificial neural networks (ANNs), support vector machines (SVMs), classification and regression tree (CART), multiple regression (MR), generalized linear regression (GLR), and chi-squared automatic interaction detector (CHAID). Based on COP values, abnormal situation of equipment can be evaluated for refrigerant leakage. Experimental results from cross-fold validation are compared to determine the best models. The study shows that data mining techniques can be used for accurately and efficiently predicting COP. In the liquid leakage phase, ANNs provide the best performance. In the vapor leakage phase, the best model is the GLR model. The models built in this study are effective for evaluating refrigeration equipment performance.abortion stories gone wrong read teenage abortion facts
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0511 3822 041 ; Email: dhdn@ac.udn.vn