Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 29,522,995

 Optimizing parameters of support vector machine using fast messy genetic algorithm for dispute classification
Tác giả hoặc Nhóm tác giả: Jui-Sheng Chou, Min-Yuan Cheng, Yu-Wei Wu, Anh-Duc Pham
Nơi đăng: Expert Systems with Applications (SCIE); Số: 41;Từ->đến trang: 3955–3964;Năm: 2014
Lĩnh vực: Kỹ thuật; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
ABSTRACT
Hybrid system is a potential tool to deal with construction engineering and management problems. This study proposes an optimized hybrid artificial intelligence model to integrate a fast messy genetic algorithm (fmGA) with a support vector machine (SVM). The fmGA-based SVM (GASVM) is used for early prediction of dispute propensity in the initial phase of public-private partnership projects. Particularly, the SVM mainly provides learning and curve fitting while the fmGA optimizes SVM parameters. Measures in term of accuracy, precision, sensitivity, specificity, and area under the curve and synthesis index are used for performance evaluation of proposed hybrid intelligence classification model. Experimental comparisons indicate that GASVM achieves better cross-fold prediction accuracy compared to other baseline models (i.e., CART, CHAID, QUEST, and C5.0) and previous works. The forecasting results provide the proactive-warning and decision-support information needed to manage potential disputes
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0511 3822 041 ; Email: dhdn@ac.udn.vn