Thông tin chung


  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

Số người truy cập: 103,627,090

 Dự báo số liệu mực nước ngày từ số liệu vệ tinh đo cao và vệ tinh đo nhiệt độ mặt đất cho vùng thiếu số liệu. Trường hợp nghiên cứu cho sông Mê Công
Tác giả hoặc Nhóm tác giả: Pham H. T., Marshall L., Johnson F., Sharma A.
Nơi đăng: Remote Sensing of Environment; Số: 212;Từ->đến trang: 31-46;Năm: 2018
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
Space borne radar altimeters often complement in-situ water levels to provide greater insights to hydrodynamic models in sparsely gauged catchments. However, 10-day or 35-day water levels derived from satellite radar altimetry are generally too infrequent for flood forecasting or hydrodynamic modelling purposes. This paper proposes a new approach to find daily water levels for areas where in-situ river heights are not available. The new approach is based on the relationship between river height and difference between daytime and night time land surface temperatures (LST). This relationship is first demonstrated using in-situ gauge data to explore appropriate statistical models to predict river height using LST differences. The approach is then applied to a number of virtual stations at the intersections between the Mekong River and the ground-tracks of Jason-2 satellite altimetry which gives 10-day water level time series. The LST difference from the thermal infrared (TIR) observations of Moderate Resolution Imaging Spectro-radiometer (MODIS) is shown to have a strong relationship with in-situ water levels and a good relationship with the Jason-2 water levels. The models included a simple linear regression model which was then extended to firstly include seasonal terms and secondly assimilate satellite altimetry data. A regression model tree (M5) was also considered but was found to be inferior to the seasonal linear model. The developed regression models were used to predict daily water levels to infill the 10-day Jason-2 altimeters. RMSE of modelled daily water levels at gauges is between 0.3 m to 0.6 m, whilst RMSE of modelled daily water levels without using in-situ data is higher varying from 1.4m to 1.9 m. The temporal correlation between the modelled water levels using satellite altimeters at virtual stations and in-situ water levels at adjacent gauges ranged from 0.72 to 0.86. These results show the potential of the proposed approach to produce high temporal resolution water levels for flood models or other applications using only remotely sensed data.
© Đại học Đà Nẵng
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: