Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 107,505,653

 Regional analysis of the 2015–16 Lower Mekong River basin drought using NASA satellite observations
Tác giả hoặc Nhóm tác giả: Venkataraman Lakshmi, Manh-Hung Le, Benjamin D. Goffin, Jessica Besnier, Hung T. Pham, Hong-Xuan Do, Bin Fang, Ibrahim Mohammed, John D. Bolten
Nơi đăng: Journal of Hydrology: Regional Studies; Số: 46;Từ->đến trang: 101362;Năm: 2023
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Satellite remote sensing products are widely used for monitoring droughts. Using NASA satellite sensors of precipitation (Global Measurement Mission, GPM), soil moisture (Soil Moisture Active and Passive, SMAP), and terrestrial water storage (Gravity Recovery and Climate Experiment, GRACE), this study evaluates the historical drought in the LMRB during 2015–16. SMAP soil moisture was validated against in-situ soil moisture, and GPM precipitation and SMAP soil moisture were cross-validated with streamflow observations. The spatiotemporal dynamics of soil moisture were also examined in different ranges of catchment areas. In performing the analysis, we used lagged correlations between hydrological variables and the indices of the Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI).
New hydrological insights for the regions: Spatio-temporal patterns of drought in 2015–16 were examined from the entire basin to small watersheds. A mismatch occurs when using GRACE data to study droughts in small watersheds (many of the small watersheds would be a fraction of the few 100 km2 spatial resolutions of GRACE pixel). In smaller watersheds, hydrological drought (SSI) was closely defined with SMAP soil moisture downscaled to 1 km rather than the meteo- rological drought index (SPI). By leveraging satellite-based observations across a range of spatial scales, this study highlights the utility of Earth observations in informing water resources and land management decisions at the regional scale.
ABSTRACT
Satellite remote sensing products are widely used for monitoring droughts. Using NASA satellite sensors of precipitation (Global Measurement Mission, GPM), soil moisture (Soil Moisture Active and Passive, SMAP), and terrestrial water storage (Gravity Recovery and Climate Experiment, GRACE), this study evaluates the historical drought in the LMRB during 2015–16. SMAP soil moisture was validated against in-situ soil moisture, and GPM precipitation and SMAP soil moisture were cross-validated with streamflow observations. The spatiotemporal dynamics of soil moisture were also examined in different ranges of catchment areas. In performing the analysis, we used lagged correlations between hydrological variables and the indices of the Standardized Precipitation Index (SPI) and Standardized Streamflow Index (SSI).
New hydrological insights for the regions: Spatio-temporal patterns of drought in 2015–16 were examined from the entire basin to small watersheds. A mismatch occurs when using GRACE data to study droughts in small watersheds (many of the small watersheds would be a fraction of the few 100 km2 spatial resolutions of GRACE pixel). In smaller watersheds, hydrological drought (SSI) was closely defined with SMAP soil moisture downscaled to 1 km rather than the meteo- rological drought index (SPI). By leveraging satellite-based observations across a range of spatial scales, this study highlights the utility of Earth observations in informing water resources and land management decisions at the regional scale.
[ lakshmi et al 2023.pdf ]
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn