Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 107,071,920

 Nickel Nanoparticles Decorated Nitrogen-Doped Carbon Nanotubes (Ni/N-CNT); a Robust Catalyst for the Efficient and Selective CO2 Methanation
Tác giả hoặc Nhóm tác giả: Wei Wang, Cuong Duong-Viet, Housseinou Ba, Walid Baaziz, Giulia Tuci, Stefano Caporali, Lam Nguyen-Dinh, Ovidiu Ersen, Giuliano Giambastiani and Cuong Pham-Huu
Nơi đăng: ACS Applied Energy Materials; Số: 2;Từ->đến trang: 1111-1120;Năm: 2019
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
Carbon dioxide (CO2) hydrogenation to methane (CH4) is a way ofgreat significance from an energy-saving viewpoint that consists in the direct conversion of a natural and abundant waste into a fuel of added value. Indeed, it can be used to provide synthetic CH4 as an alternative source to natural gas to be potentially injected in the existing gas grid. This contribution describes the synthesis of a robust catalyst for the efficient and selective CO2 methanation, based on Nickel nanoparticles (Ni-NPs) grown on N-doped carbon nanotubes (Ni/N-CNT). The
high thermal conductivity of N-CNT ensures a good dispersion of the reaction heat throughout the catalyst bed while N-doping lists a number of key and distinctive catalyst features: a) it provides preferential binding sites for the Ni-NPs stabilization, b) it contributes to generate CO2 concentration gradients in proximity of the catalyst active phase and c) it largely prevents the formation of coke deposits (catalyst passivation) on stream. The as prepared catalyst shows superior methanation activity and selectivity compared to those claimed for the most representative Ni-based composites reported so far in the literature. Importantly, the Ni/N-CNT displays its better performance in CO2 methanation under severe reaction conditions, that is, high temperatures and GHSV (up to 120 000 mL g-1 h-1) where it unveils an excellent stability as a function of time-on-stream
ABSTRACT
Carbon dioxide (CO2) hydrogenation to methane (CH4) is a way ofgreat significance from an energy-saving viewpoint that consists in the direct conversion of a natural and abundant waste into a fuel of added value. Indeed, it can be used to provide synthetic CH4 as an alternative source to natural gas to be potentially injected in the existing gas grid. This contribution describes the synthesis of a robust catalyst for the efficient and selective CO2 methanation, based on Nickel nanoparticles (Ni-NPs) grown on N-doped carbon nanotubes (Ni/N-CNT). The
high thermal conductivity of N-CNT ensures a good dispersion of the reaction heat throughout the catalyst bed while N-doping lists a number of key and distinctive catalyst features: a) it provides preferential binding sites for the Ni-NPs stabilization, b) it contributes to generate CO2 concentration gradients in proximity of the catalyst active phase and c) it largely prevents the formation of coke deposits (catalyst passivation) on stream. The as prepared catalyst shows superior methanation activity and selectivity compared to those claimed for the most representative Ni-based composites reported so far in the literature. Importantly, the Ni/N-CNT displays its better performance in CO2 methanation under severe reaction conditions, that is, high temperatures and GHSV (up to 120 000 mL g-1 h-1) where it unveils an excellent stability as a function of time-on-stream
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn