Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 109,872,168

 An ultrahigh input impedance low noise analog front-end design for epilepsy brain recording system
Tác giả hoặc Nhóm tác giả: Nguyen Thi Ngoc Anh, Nguyen The Tien, Nguyen Van Tuan, Dao Duy Tuan, Vu Van Thanh, Pham Quang Thai, Huynh Hai Au, Nguyen Van Tho
Nơi đăng: 2024 John Wiley & Sons Ltd; Số: 10;Từ->đến trang: 1-14;Năm: 2024
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
ABSTRACT
This paper presents an ultrahigh input impedance, low noise, and wide bandwidth four-channels analog front-end (AFE) for low-power neural recording systems. To achieve high input impedance, the buffer channels are placed between the electrodes and the main amplifier stage of the AFE. The buffer is designed with low noise and low power consumption to obtain high input
impedance of overall AFE while maintaining low input-referred noise and low power consumption. A chopper capacitively coupled chopper instrumentation amplifier (CCIA) is placed after the buffer as the main amplifier stage of the AFE to improve the common mode rejection ratio (CMRR) and the input referred noise of the overall AFE design. A new chopper stabilization control technique is proposed and used in the CCIA stage to reduce the charge injection and clock feedthrough and consequently the high-frequency ripple of the AFE output signal. A programmable gain amplifier (PGA) is designed as the third stage to adjust the overall gain of the AFE. Benefiting from PGA, the AFE can adapt its gain with both action potential and local field potential signals. To reduce the number of the electrode to be implanted and reduce the
impedance mismatch that causes the degradation on overall CMRR performance, two AFE channels shared a reference electrode followed by a reference buffer. The proposed AFE is designed and simulated using a standard 180 nm CMOS process and operates in a wide frequency band of 2.1 to 2500 Hz with low input-referred noise of 1.6 μVrms and a CMRR over 80 dB at 2.1 Hz. The total power consumption is lower than 4.3 μW per channel. With the proposed
structure of AFE, the input impedance is 35 GΩ @ 21 Hz and the minimum impedance over operational bandwidth is 75 MΩ @ 2.5 kHz.
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn