Thông tin chung

  English

  Đề tài NC khoa học
  Bài báo, báo cáo khoa học
  Hướng dẫn Sau đại học
  Sách và giáo trình
  Các học phần và môn giảng dạy
  Giải thưởng khoa học, Phát minh, sáng chế
  Khen thưởng
  Thông tin khác

  Tài liệu tham khảo

  Hiệu chỉnh

 
Số người truy cập: 107,497,741

 Characteristics of SH-wave propagation during oil reservoir excitation using BEM formulation in half-plane model representation
Tác giả hoặc Nhóm tác giả: Mohammed Bashir AbdullahiShiferaw Regassa JufarSunil Kumar[...]Le Minh Duc
Nơi đăng: International Journal of Rock Mechanics and Mining Sciences; Số: 162(8);Từ->đến trang: 105303;Năm: 2023
Lĩnh vực: Khoa học công nghệ; Loại: Bài báo khoa học; Thể loại: Quốc tế
TÓM TẮT
The application of elastic waves induced through seismic excitation (stimulation) to increase the oil recovery from a hydrocarbon reservoir as an enhanced oil recovery (EOR) technique is currently in its infancy. Seismic stimulation is a cost-effective and efficient method for enhancing oil production from waterflood reservoirs by increasing areal sweep performance and decreasing water cuts, hence extending the productive life of a mature oilfield. It has great prospect in offshore fields where technological difficulties and restrictions hinder the deployment of other EOR methods. Herein, this study investigates the effects of a direct impact of seismic SH-wave on a 2D transient behaviors of an oil reservoir with a half-plane model. In the time domain, a half-plane model containing a poroelastic oil reservoir is formulated using a boundary element method (BEM). The model considers complete seismic SH-wave propagation using Ricker wavelet, from a down-hole source via a partially saturated oil reservoir to ground surface receiving points. The model is based on 2D elastodynamic and Biot's dynamic poroelasticity equations. A DASBEM program is incorporated into MATLAB (2022a) to develop a model of wave propagation. The result showed that variable incidence angle affects the frequency and time domain responses, while the depth of the reservoir and porosity influence the amplitude of oscillation. Synthetic seismograms at stations above the oil reservoir indicated attenuation and numerous diffracted waves with various time delays. Multiple SH-wave reflections in the reservoir amplify 3D signals, while at higher dimen-sionless frequencies, effect of porosity amplify the distant locations. This technique can be utilized as fluid indicator to monitor wave based EOR using SH-wave attenuation, and to detect and visualize the permeability changes in reservoir (impermeable boundaries) during CO 2 plume storage for the purpose of monitoring the safety of CO 2 geo-sequestration.
ABSTRACT
The application of elastic waves induced through seismic excitation (stimulation) to increase the oil recovery from a hydrocarbon reservoir as an enhanced oil recovery (EOR) technique is currently in its infancy. Seismic stimulation is a cost-effective and efficient method for enhancing oil production from waterflood reservoirs by increasing areal sweep performance and decreasing water cuts, hence extending the productive life of a mature oilfield. It has great prospect in offshore fields where technological difficulties and restrictions hinder the deployment of other EOR methods. Herein, this study investigates the effects of a direct impact of seismic SH-wave on a 2D transient behaviors of an oil reservoir with a half-plane model. In the time domain, a half-plane model containing a poroelastic oil reservoir is formulated using a boundary element method (BEM). The model considers complete seismic SH-wave propagation using Ricker wavelet, from a down-hole source via a partially saturated oil reservoir to ground surface receiving points. The model is based on 2D elastodynamic and Biot's dynamic poroelasticity equations. A DASBEM program is incorporated into MATLAB (2022a) to develop a model of wave propagation. The result showed that variable incidence angle affects the frequency and time domain responses, while the depth of the reservoir and porosity influence the amplitude of oscillation. Synthetic seismograms at stations above the oil reservoir indicated attenuation and numerous diffracted waves with various time delays. Multiple SH-wave reflections in the reservoir amplify 3D signals, while at higher dimen-sionless frequencies, effect of porosity amplify the distant locations. This technique can be utilized as fluid indicator to monitor wave based EOR using SH-wave attenuation, and to detect and visualize the permeability changes in reservoir (impermeable boundaries) during CO 2 plume storage for the purpose of monitoring the safety of CO 2 geo-sequestration.
[ http://dx.doi.org/10.1016/j.ijrmms.2022.105303 ]
© Đại học Đà Nẵng
 
 
Địa chỉ: 41 Lê Duẩn Thành phố Đà Nẵng
Điện thoại: (84) 0236 3822 041 ; Email: dhdn@ac.udn.vn